# ACADEMIC REGULATIONS COURSE STRUCTURE AND DETAILED SYLLABUS

## **ELECTRICAL & ELECTRONICS ENGINEERING**

for B.TECH. FOUR YEAR DEGREE COURSE (Applicable for the batches admitted from 2015-2016)

## **COLLEGE CODE: C4**



JAYAMUKHI INSTITUTE OF TECHNOLOGICAL SCIENCES (UGC-AUTONOMOUS)

Affiliated to Jawaharlal Nehru Technological University Hyderabad Narasampet, Warangal – 506 332 Telangana State, India

## JAYAMUKHI INSTITUTE OF TECHNOLOGICAL SCIENCES (UGC-AUTONOMOUS)

## IV Year B.Tech. II-Sem: EEE

## L T P C 3 0 0 3

#### **PROFESSIONAL -V**

#### (AJ8237)FUNDAMENTALS OF HVDC AND FACTS DEVICES

**Pre- Requisites:** To learn this course student should have the concepts on the following subject: Power systems-II, Power Electronics

#### **OBJECTIVES:**

- 1. This subject deals with the importance of HVDC transmission, analysis of HVDC converters, Harmonics and Filters.
- 2. Reactive power control and Power factor improvements of the system. it also deals with basic FACTS concepts
- 3. Static shunt and series compensation and combined compensation techniques.

## UNIT—I

**Introduction:** Comparison of AC and DC transmission systems, application of DC transmission, types of DC links, typical layout of a HVDC converter station. HVDC converters, pulse number, analysis of Gratez circuit with and without overlap, converter bridge characteristics, equivalent circuits or rectifier and inverter configurations of twelve pulse converters.

#### UNIT—II

**Converter & HVDC System Control:** Principles of DC Link Control — Converters Control Characteristics — system control hierarchy, firing angle control, current and extinction angle control, starting and stopping of DC link.

#### UNIT-III

Harmonics, Filters and Reactive Power Control: Introduction, generation of harmonics, AC and DC filters. Reactive Power Requirements in steady state, sources of reactive power, static VAR systems.

**Power Flow Analysis in AC/DC Systems:** Modeling of DC/AC converters, Controller Equations-Solutions of AC/DC load flow —Simultaneous method-Sequential method.

#### UNIT-IV

**Introduction to FACTS:** Flow of power in AC parallel paths and meshed systems, basic types of FACTS controllers, brief description and definitions of FACTS controllers.

**Static Shunt Compensators:** Objectives of shunt compensation, methods of controllable VAR generation, static VAR compensators, SVC and STATCOM, comparison between SVC and STATCOM.

## UNIT-V

**Static Series Compensators:** Objectives of series compensation, variable impedance typethyristor switched series capacitors (TCSC), and switching converter type series compensators, static series synchronous compensator (SSSC)-power angle characteristicsbasic operating control schemes.

**Combined Compensators:** Introduction, unified power flow controller (UPFC), basic operating principle, independent real and reactive power flow controller, control structure.

## **TEXT BOOKS:**

- 1. HVDC Transmission, S. Kamakshaiah, V. Kamaraju, The Mc Graw Hill Companies.
- 2. Understanding FACTS, Concepts and Technology of Flexible AC Transmission Systems, Narain. G. Hingorani, Laszlo Gyugyi, IEEE Press, Wiley India.

## **REFERENCE BOOKS:**

- 1. HVDC and Facts Controllers Applications of Static Converters in Power Systems, Vijay K. Sood, Kiuwer Academic Publishers.
- 2. HVDC Power Transmission Systems: Technology and system Interactions, K.R.Padiyar, New Age International (P) Limited.
- 3. Thyristor Based Conrollers for Electrical Transmission Systems, R.Mohan Mathur, Rajiv K. Varma.Wiley India.
- 4. FACTS Modeling and Simulation in Power Networks, Enrique Acha, Wiley India Distributed by BSP Books Pvt. Ltd.

## **OUTCOMES:**

- 1. After going through this course the student gets a thorough knowledge on, basics of HVDC system.
- 2. converters control schemes harmonics filters reactive power control and power flow analysis in HVDC systems
- 3. basic concepts of FACTS, necessity of FACTS controllers and their operation, shunt and series compensation through various static compensators
- 4. With which he/she can able to apply the above conceptual things to real-world electrical and electronics problems and applications.

\*\*\*